Gl MapServer

Application Programming Interface Reference

Geointelligence SA

97 Kifissias Av.

11523 Athens, Greece
30 July 2019

Geointelligence Map Server — APl Reference

97 Kifissias Av.

11523, Athens

R
geoint
Geointelligence
Tel. 210-6998687
Fax. 210-6998412
E-mail ngi@ngi.gr
URL http://www.geointelligence.gr

Document Title

Gl MapServer : Application Programming Interface Reference

Date July 30, 2019
Version 3.14

Status Working document
No Of Pages 75

Chapter: Table of Contents

mailto:ngi@ngi.gr
http://www.geointelligence.gr/

Geointelligence Map Server — API Reference

TABLE OF CONTENTS

TablE OF CONTENES ...eeeiieiietie et s st b ettt e b e b e bt e e sa e sanesbeesreenneenneenes 3
N 11 o Yo Vot o o FO PSP P POV PRROPROPRPRORIN 5
SEYIE CONVENTION ..ttt ettt e et e st e st e e st e e sabeesabeesabeesabeesaneenas 5

R o] o o T o1 PP PP PPRROI 7
R B 1 [-TTo] o o T= ot A PO PP PPRRO 9
B C1 o XY = 11 1 o 1= = 1Y =T SRS 10
LT O 1o 1= o 1= 1YY SRR 12
(S 1=t 4 a1 V[T o F= = SRS 14
7. GEEFUIIEXEENT ..c.eiiiiiiieie e et 16
8. GEIMAGEFOTEXTENT ittt ettt e e e e s et e e e e e s e s att e e e e e e s bnraaaeas 18
9. GEOCOARAUAIESS. ...ttt st e et sa e 20
10, Fre@TeXtSEArCH ..oiiiiiee e e e et s 25
I DOIEANT e s 25
11. ReVErsEGEOCOUEAUUAINESSeiuiiriieriierieetiett ettt e st ettt st e st s beesbeesbe e bt et e e st e ebeesbe e b e e beeanesanesnees 33
12. BatChREVEISEGEOCOUEocuiiruieiieiieiteit ettt ettt ettt st s e st bt e bt ettt e st e sbe e b e e b e e beeareemnesaees 35
13, GEOFENCE ..ttt s 37
14, NearestFEAtUreSocciiiiiiiii i 39
T Vo o 10 LT I YT TSRS 42
ST Vo o LU LY - Y=Y 4 D - | - FO USRS 46
17, SEEUSEIRENUEIEN ..neeitieitieiteeet ettt ettt ettt ettt sbee s bt e bt et e eaeeebeesbe e beeabesabesanesaees 49
18, SEEUSEILADEIET ...ttt st bbbt et ettt b e bbb st naees 51
19. Delet@USErLAayErData ...ccccceiieeciieeeiiieeeeiiee e s tte e e sttt e e e sate e e esate e e staeeeesstaeeeennteeesnseeeesnbaeeennreeeennrns 54
20, ROUTE ottt e 55
21, CallEXTENAEAFUNCLIONeiiiiierieerieeie ettt ettt s e neeene e 59
PN U SIS . aaaaann 60
GEEUSEISINTO ...ttt ettt ettt et e bt e bt e b e et e e e be s abesheesbeenbe et e eateeuteebeenbeens 61

(DY L] =T 000T Y 0 1< o1 1o o IR 63

Chapter: Table of Contents

Geointelligence Map Server — APl Reference

22, GetDeStINATOrDATFIIE ..ottt sr e e 64
23, PINESBIVICE i 66
24, PrOJECTPOINTS .ooiiiiiiiiiitii ettt s e e e s r e s a e s e s 66
25, GEEDISTANCE ..eeeiiiiiieeet e e s r e a e s e s 68
26, GEELCOSTIMATIIX weiierieiiiiiieiiitiee et e s s e e e s e e s r e e s s e s e e s nnees 70
28. GetNEArestPOINTS ...ccovviiiiiiiiiiii 72
DL T N/ o1 ot | I W LY Y o o - [o LSS 74
Initialising @ CONNECLION T ThE SEIVET ..c...eiiii et e e e e e e s e e e e saraeeeans 74
USING the M@P SEIVET ..ttt st ettt e s bt e st e e st e e sabeesabeesaseesabeesareenas 74
Finalising @ conNection 0 the SEIVEN........cooiiiiiiiie et 74
TYPICAl ClIENT SCENAIIO .ttt ettt e st e st e sabe e st e e sabeesaneesaseesnreenas 75
30, APPENAIXES c.ueeieireeeuieesitteete e sttt e et e st e et e e s bt e s bt e s be e e bt e st e e e bt e s bt e e bt e s bt e e bt e s be e e beesabe e e bt e s beeeneenares 75
CUSEOM LAY IS i 75

Chapter: Table of Contents

Geointelligence Map Server — APl Reference

1. INTRODUCTION

Gl Map Server is a mapping server that provides access to a number of Greek geographical datasets to
requesting clients. Along with the mapping capabilities a set of functions relevant to Greek data has
been developed and can be accessed through the server. The functions include geocoding, reverse
geocoding and routing. Each connection is isolated providing the client with the flexibility to build its
own personalised mapping environment (in terms of symbology, labelling etc.).

Web Server: The basic form of the product is a Web server that wraps Map Server’s APl with SOAP
web services. For each APl method there is a corresponding SOAP operation accepting parameters as
xml serialized objects (strings). The functionality of the server is exposed through a Web Services
interface available at http://<host>:<port>/NGIMapServer/soap/INGIMapServer. The WSDL file for
the NGI Map server is available at http://<host>:<port>/NGIMapServer/wsdl/INGIMapServer.

DIl Server (Available only in special cases, not available for web applications): Map Server is also
available in special cases in the form of a dll. For every APl method there is a DLL exposed method
accepting arguments as string. The API is identical supporting the following functions:

. Connect

. Disconnect

. GetAvailableLayers

. OrderLayers

. GetFulllmage

. GetFullExtent

. GetlmageForExtent

. GeocodeAddress

. FreeTextSearch (Map Server 2.0+)
. ReverseGeocode

. NearestFeatures

. AddUserLayer

. AddUserLayerData

. SetUserRenderer

. SetUserLabeler

. DeleteUserLayerData

. Route

. CallExtendedFunction/PingUsers/GetUsersInfo/DeleteConnections
. GetDestinatorDATFile (deprecated)
. ProjectPoints

Additionally the dIl version of MapServer exposes the following functions, required to initialise,
finalise and manage string memory allocations:

. InitialiseServer
. FinaliseServer
. FreeCharBuffer

For these 3 functions please refer to the dll developer’s guide. Please note that when using the ocx
(ActiveX) control developers don’t need to interact with the dll directly, server initialisation,
finalisation and string buffer memory allocation are handled by the ocx control.

STYLE CONVENTION

The following notation is used to describe the function calls and parameters:

Chapter: Introduction

Geointelligence Map Server — APl Reference
Input Parameters M N Value MinV
ConnectParams ConParams
user v x string
Output Parameters
authinfo Authinfo
errorMessage - v string
Result return integer

[Function parameter names

[xmL Element Names. Nesting is indicated by the indentation. Multiple instances are
denoted by a * after the element name.

[xmL Attribute Names

] Mandatory field: In the case of input parameters, a v'sign indicates that this element or

attribute must be included in the request string, while a % sign means that the field may be

omitted. A v'? sigh means that two elements or attributes are exclusively mandatory, i.e. one

of those should exist in the request. In the case of output parameters, all elements and

attributes listed will be present in the response string.

O Nullable field: In the case of input parameters, a v'sign indicates that the field’s value may

be left blank, while a % sign means that the field’s value must be specified. In the case of

output parameters, a v'sign indicates that the server may return an empty value

O Value type or domain: Indicates the value type (integer, string) or domain (i.e. {0,1},

{square, circle, triangle}, etc.). The default value is indicated in bold or within parentheses.

The notation {0|1}* indicates a sequence of 0 and 1 (e.g. 1001).

MinV: Indicates the minimum version this item refers too. Features are supported by all

versions except if stated otherwise.

Chapter: Introduction

Geointelligence Map Server — API Reference

2. CONNECT

inputparemeters | TW TN Value | Minv_

ConnectParams ConParams
user v ooox string
pass v oox string
encKey v ¥ string
Output Parameters
Authinfo = =
connectionHandle - x string
errorMessage - v string
Result return - - integer

DESCRIPTION

Connect is used to initialise the connection to the server. It takes ConnectParameters as input and
returns 1 in result if the credentials provided in ConnectParameters are valid, otherwise returns <> 1.
If the connection was successful then authinfo contains the connection identifier that is going to be
used in all subsequent calls to the server. If the connection cannot be established (usually due to an
invalid username/password pair) then authinfo provides textual description of the error that occurred
in the attempt to connect to the server.

INPUT PARAMETERS DESCRIPTION
The ConnectParameters element is used to transfer user credentials to the server:

e useristhe username
e pass is the password for server connection
e enckey is intended for future use and may be omitted.

OUTPUT PARAMETERS DESCRIPTION
The Authinfo element contains the following attributes:

e connectionHandle: a number that uniquely identifies a successful client connection

e errorMessage: In cases where the connection with the map server cannot be established
attribute contains the description of the error.

e The connectionHandle attribute appears only in successful connections while errorMessage
attribute only in failed attempts.

FUNCTION RESULT DESCRIPTION

‘The return value of the function indicates if the connection was successful or not. The function
returns 1 if the connection was successful and <> 1 if the connection attempt failed.

EXAMPLE

Chapter: Connect

Geointelligence Map Server — API Reference

<ConParams user="foo" pass="foo" enckey=""/>

REQUEST

<AuthInfo connectionHandle="123456" errorMessage=""/>

Chapter: Connect

Geointelligence Map Server — API Reference

3. DISCONNECT

_IE-II-

Authinfo

_ connectionHandle 4 £ string
Disconnect = =
_ errorMessage = v string
return = = integer

DESCRIPTION

Disconnect is used to finalise the connection to the server. It takes authinfo as input parameter and
returns 1 in result if the disconnect attempt was successful, otherwise returns <> 1 and
disconnectResponse provides textual description of the error that occurred in the attempt to
disconnect from the server.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

OUTPUT PARAMETERS DESCRIPTION

DisconnectResponse provides just a placeholder for error messages that may arise from the
disconnect function call. If the disconnect call is successful (return value 1) then the Disconnect
element will be empty otherwise it will contain an errorMessage attribute with the description of the
error that occurred.

FUNCTION RESULT DESCRIPTION

The function returns 1 if the request was successful and <> 1 if the request failed.

EXAMPLE

<AuthInfo connectionHandle="123456">

REQUEST

<Disconnect errorMessage="" />

Chapter: Disconnect

Geointelligence Map Server — API Reference

4. GETAVAILABLELAYERS

imputparameters | TW TN Value | Minv
ECII Authinfo —T

I connectionHandle v % string
Layers :
I errorMessage - v string
S Layer =N
P jayerName - - string
_ layerID - - integer
I geometryType - - {1268911)
_ UserAttributes - -
] layerClass = = string
_ poiClass - - string
m return = = integer

DESCRIPTION

GetAvailableLayers is used to retrieve the layers information from the map server. The layers
information is returned in AvailableLayers parameter and includes information about the accessible
database layers for the authinfo access token provided, as well as information about the custom
layers belonging only to that connection (see AddUserLayer description). The function returns 1 on
success, <> 1 otherwise with the error description returned in the AvailableLayers errorMessage
parameter.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description)

OUTPUT PARAMETERS DESCRIPTION

The AvailableLayers parameter holds the information about the accessible to the user layers. The
Layers element is a collection of Layer elements each one having the attributes of a given layer.

e JayerName is the name of the layer as specified in the initialisation file of the server or as
provided by the user in case of custom layers (see AddUserLayer description).

e JayerID is a unique identifier automatically generated by the server. The layerID is of
particular importance since it is used by the client to build the mask of visible layers in
GetFulllmage and GetimageForExtent requests.

e geometryType is the type of geometry the layer holds where :

Chapter: GetAvailablelayers

o 1:Point

o 2 :MultiPoint

o 6:Polyline

o 8:Polygon

o 9:MultiPolygon

[EEY
o

Geointelligence Map Server — API Reference

o 11:Raster

The Layer element also contains the userAttributes sub-element, which represents the user-defined
layer parameters needed to categorize and group layers. It contains the following attributes:

e layerClass: this is the group the layer belongs to. The following groups are currently available:
o Cosmetic: e.g. park polygons, university campuses etc.
o Roads: layers constituting the road network
o POI: layers containing the points of interest
o Raster: layers containing images (e.g. orthomaps, satellite photos or LIDAR images)
e PoiClass: in case of a POI layer (i.e. having layerClass="POI"), this attribute indicates the
group the layer belongs to. For example, in case of layers representing banks there will be a
different layer for each bank name (i.e. National Bank, Commercial Bank) and each will have
a PoiClass of Banks (layerClass="POI" poiClass="BANKS").

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The function
returns 1 if the connection was successful and <> 1 if the connection attempt failed.

EXAMPLE
<AuthlInfo connectionHandle="123456"/>

REQUEST

<Layers errorMessage=""/>

<Layer layerName="Roads" layerID="4" geometryType="2">
<UserAttributes layerClass="" poiClass=""/>

<lLayer/>

<Layer layerName="Schools" layerID="8" geometryType="1">
<UserAttributes layerClass="" poiClass=""/>

<Layer/>

</Layers>

Chapter: GetAvailablelayers

[ERY

Geointelligence Map Server — API Reference

5. ORDERLAYERS

Cimput Parameters | VTN S Value [Miny
ETCET Acthinfo

_ connectionHandle vooox string
LayerOrdering - -

— Sl
I ayerp v % integer
0 order v % integer
LayerOrdering

P errorMessage - v

— Sl
_ layerID = = integer
_ order - = integer
m return = = integer

DESCRIPTION

OrderLayers is used to change the default ordering of the layers as this is specified in the server
initialisation file. The function returns 1 on success, <> 1 otherwise with the error description
returned in LayerOrder out parameter. The ordering of layers is specified in the
LayerOrderParameters parameter and it consists simply of pairs of layerlds and order number. In case
of successful function call (return value 1) the LayerOrder parameter returns information about the
new ordering of all accessible layers to the user. A current limitation of the ordering is that it can
change the order of database layers only and not the order of custom layers (see AddUserLayer
description) which are always placed on top of database layers.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description)

The LayerOrdering element is a collection of LayerOrder elements which specify the ordering of
layers. It is not necessary to specify a LayerOrder element for every layer (although you may), rather
the function will be called in a layer by layer basis depending on user requests. layeriD is the layer id
as this is generated by the server and returned to the user by a call to GetAvailableLayers function
while order is the requested order of the layer.

OUTPUT PARAMETERS DESCRIPTION

The LayerOrdering element is a collection of LayerOrder elements which indicate the new ordering of
layers. The collection holds a LayerOrder element for every database layer accessible to the user. The
meaning of the attribute values is as for the LayerOrderParameters input parameter.

Chapter: OrderLayers

N

Geointelligence Map Server — API Reference

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The function
returns 1 if the connection was successful and 1 if the connection attempt failed.

EXAMPLE

REQUEST

<Authlnfo connectionHandle="123456"/>
<LayerOrdering>
<LayerOrder layerID="1" order="2" />
<LayerOrder layerID="2" order="1" />

</LayerOrdering>

RESPONSE

<LayerOrdering errorMessage=""/>
<LayerOrder layerID="1" order="2" />
<LayerOrder layerID="2" order="1" />

</LayerOrdering>

Chapter: OrderLayers

w

Geointelligence Map Server — API Reference

6. GETFULLIMAGE

Cimput parameters | TN T Value | Min_
ECCET Authinfo

_ connectionHandle v % string
ImageRequest
B pixelsx v % integer
P pixelsy v % integer
I imageFormat x v {01,234} 4:2.0
I drawlayerShapesMask voox {01
I drawlayerlabelsMask v o x {01
coordinateSystem x {EGSA,
. e
image
] minX - - string
D miny 0
_ maxX - B double
D maxy S double
I errorMessage - Y string
T Data _ |
m return | - integer

DESCRIPTION

GetFulllmage is called whenever a map image is required for the full extent of the layers available to
the user. Typically GetFulllmage is called once in the initialisation of the client mapping application in
order to get a startup image without previous knowledge of the geographical extent of datasets. The
function returns the image data and the extent (minx, minY, maxX, maxY) of the image in the Image
output parameter. The extent returned along with pixel coordinates is then used as a starting point
for pixel-to-actual coordinate translations performed by the client. This is useful when the client
implements map browsing capabilities (zoom in, zoom out, pan) where pixel coordinates of the
rectangle drawn by a user have to be transformed to actual coordinates and fed into
GetlmageForExtent in order to get an updated map image. In FulllmageParameters parameter the
client supplies information about the pixel dimensions of the requested image, the desired format of
the image returned, the visible layers mask and the projection system of the extent coordinates. The
function returns 1 if successful, otherwise <> 1 with the error description returned in Image output
parameter. If the function call is successful then the Image output parameter contains the actual
image data (in the format requested by the client) as a base64 encoded string as well as the extent
coordinates in the coordinate system specified by the client.

INPUT PARAMETERS DESCRIPTION

Chapter: GetFulllmage

[EEY
i

Geointelligence Map Server — APl Reference

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

FulllmageParameters specify the input parameters to the function.

e pixelsX and pixelsY are the requested dimensions of the picture in pixels.

e imageFormat is the desired format of the picture. A value of 0 (imageFormat="0")
corresponds to TIFF format, a value of 1 to JPEG format, a value of 2 to GIF format, a value of
3 to BMP format and finally 4 is for PNG (valid only for Map Server 2).

e coordinateSystem is optional and may be used in cases where the client requires a different
projection system than EGSA87 (for the moment apart from EGSA the only acceptable
coordinate system is WGS84). If used the server will project on the fly the coordinates of the
extent to the new coordinate system, while if omitted the server assumes an EGSA
coordinate system and the extent coordinates will be returned as is. The only acceptable
values for the coordinate system are “EGSA” and “WGS84”.

The drawlLayerShapesMask and drawLayerLabelsMask attributes are strings representing the visibility
of layers in the output image. In order for a layer to be visible, the respective character in the mask
string has to be set to 1 instead of 0. For example, given three layers having layerlds 0,1,2, in order to
display only the layer having a layered=2, the drawlayerShapesMask should be set to
drawLayerShapesMask="001". To display the layers having ids 0 and 2 and hide layer 1 the mask
should be set to drawlayerShapesMask="101". If the string contains fewer characters than the
number of available layers, the layers not represented in the string will not be displayed. For example
if 10 layers are available having layerids of 0 to 9, then the drawlLayerShapesMask="11101" will cause
layers 4 and 5 to 9 not to be displayed.

OUTPUT PARAMETERS DESCRIPTION

The Image output parameter contains the image data for the input parameters specified. Data is
stored as a base64 encoded string in its own element Data. Along with image data the actual extent
coordinates are returned in attributes minX, minY, maxX and maxy.

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

FUNCTION RESULT DESCRIPTION

The function returns 1 if the request was successful and 1 if the request failed.

EXAMPLE

REQUEST

<AuthInfo connectionHandle="123456"/>
<ImageRequest pixelsX="100" pixelsY="100" imageFormat="1"
drawlayerShapesMask="" drawLayerLabelsMask="" coordinateSystem="EGSA" />
<lmage minX="400000" minY="4000000" maxX="410000" maxY="4010000"
errorMessage=""/>
<Data>b64encodedimageData</Data>
</Image>

Chapter: GetFulllmage

0p

Geointelligence Map Server — API Reference

7. GETFULLEXTENT

Cimput parameters | M TN Value | Winv |

Authinfo
I connectionHandle v % string
FullExtentRequest - -

x {EGSA,

WGS8a)
I
=]

Output Parameters

GetFullExtentResponse

double

double

integer

DESCRIPTION

The GetFullExtent function is used to request the coordinates corresponding to maximum extend
available for the given geographical data.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

In the FullExtentRequest element the user should specify the coordinateSystem attribute which
indicates the geographical coordinate system that will be used to express the extent coordinates.

OUTPUT PARAMETERS DESCRIPTION

The minX, minY, maxX and maxY attributes contain the coordinates of the corners of the rectangle
describing the full extent of the available geographical data.

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The function
returns 1 if the connection was successful and <> 1 if the connection attempt failed.

Chapter: GetFullExtent

(@)

Geointelligence Map Server — API Reference

EXAMPLE
“<Authinfo connectionHandle="123456"/>

REQUEST
<FullExtentRequest coordinateSystem="EGSA"/>

RESPONSE
<FullExtentResponse minX=

minY="" maxX="" maxY=""/>

Chapter: GetFullExtent

~N

Geointelligence Map Server — API Reference

8. GETIMAGEFOREXTENT

imputparameters | M TN Value | Minv_
ETCCTM Authinfo
Ccomnectionandle

v % string

ImageRequest

v double

double

l\

integer

{0,1,2,3,4} 4:2.0

{o|1}*
{string,string} 2.2
{string,string} 2.2

[0,100] (90)

Output Parameters
Image

double

double

string

HEEECEC R RS

integer

DESCRIPTION

GetlmageForExtent is called whenever a map image is required for a client specified actual
coordinates rectangle. The only difference to GetFulllmage function is that the client supplies an
actual extent for the image and the image returned will be bounded by this rectangle. Apart from
image data GetImageForExtent (as was the case with GetFulllmage) returns extent coordinates that in
the general case may be different from the extent specified by the client. This is likely to happen
when the ratio of pixel width to pixel height (pixel parameters are specified in the
ImageForExtentParameters) is different from the ratio of actual width to actual height (implicitly
specified by the extent coordinates in ImageForExtentParameters). If the server was to obey both -
pixel and actual coordinates - then the map image returned by the function would be stretched.

INPUT PARAMETERS DESCRIPTION

Chapter: GetlmageForExtent

(00

Geointelligence Map Server — APl Reference

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

ImageForExtentParameters: Same as FulllmageParameters in GetFulllmage with the difference that
the client specifies an input extent (minX, minY, maxX, maxy).

A new pair of attributes has been added as of 2.2 version too. The two attributes can be used as an
alternative to drawlayerXXXXXMask. The two new attributes are drawlayerClassLabels and
drawLayerClassShapes and they are taken into consideration only if the masks attributes are missing.

The purpose of the two new attributes is the simplification of the API by allowing the client to draw all
the layers he cares about without building the masks. Instead of specifying a mask the client specifies
one or more layer classes separated by a comma. All layers of the specified layer classes will be
drawn; this is called the layer classes approach.

Layer classes are returned by GetAvailableLayers so it may seem that the client has to call this method
no matter if it uses the masks or the layer classes approach. However classes are not expected to
change in future versions, while on the other hand layers are more susceptible to change (for
example map server 2 has at least 10 more layers than version 1). Furthermore the masks approach
requires knowing the number of layers too; the layer classes approach doesn’t. So instead of
specifying which layers to draw one by one using a zero/one mask built from the GetAvailableLayers
response, the client can request for example drawing all ROADS and COSMETICS layers. Of course if a
client wants to draw all cosmetic layers but the lakes it has to use the masks approach.

There are 4 predefined layer classes ROADS, COSMETICS, POl and ROUTE.

OUTPUT PARAMETERS DESCRIPTION

As for Image parameter in GetFulllmage

FUNCTION RESULT DESCRIPTION

The function returns 1 if the request was successful and <> 1 if the request failed.

EXAMPLE
<Authinfo connectionHandle="123456"/>

REQUEST

<ImageRequest minX="400000" minY="4000000" maxX="410000" maxY="4010000"
pixelsX="100" pixelsY="100" imageFormat="1" coordinateSystem="WGS84"
drawlayerShapesMask="11011" drawLayerlLabelsMask="11011" />

RESPONSE
<lmage minX="400000" minY="4000000" maxX="410000" maxY="4010000"
errorMessage=""/>
<Data>b64encodedimageData</Data>
</Image>

Chapter: GetlmageForExtent

X0

Geointelligence Map Server — API Reference

9. GEOCODEADDRESS

imputparameters | TN Value | Minv
ETCCTM Authinfo
O connectiontlandle v % string

[GeocodeddressParameters (Ko 7 o =S NI

string
<empty>

integer (0)

string
<empty>

L N N

x

[1,20]

x

{EGSA,
WGS84}
Integer (0) 2.0
Integer 2.2
[0,4] (0)
Double [- 2.2
1,1] (1)

Double [- 2.2
1,1] (-1)
Double [- 2.2
1,1] (-1)
Double [-
1,1] (-1)
Integer
[1,15] (15)
Integer
(1,31 (3)

X %

x x x x x

x

Output Parameters

GeocodeAddressResults

Chapter: GeocodeAddress

2.2

2.2

2.2
]

N
o

Geointelligence Map Server — API Reference

I errorMessage - v’ string
I GeocodeResults * - -
S - - integer
_ description - - string
P GeocodeResult * - -
_ foundAs - - string
_ matchedNumber - - integer 2.0
] geocodingScore - - double
e g - - integer
] municipality - - string
S pointx - - double
] pointy - - double
s resultType - - integer
_ addressRegion = - string 2.2
_ addressSettlement = - string 2.2
_ addressNeighborhood - - string 2.2
_ addressPrefecture - - string 25
I minX - - double 2.2
I minY - - double 2.2
_ maxX = - double 2.2
_ maxY = - double 2.2
_ description = - string
_ return = - integer

DESCRIPTION

GeocodeAddress is used when the client wants to get a real world position in coordinates from a
corresponding road name and number. The process of geocoding an address name involves looking
up the name in the roads database gathering acceptable matches depending on a scoring function
that evaluates the “closeness” of the road name stored in the database to the name provided by the
client, then - if an address number is provided - looking up for the address number for roads with
names in the set of acceptable matches and finally transforming the information about matched road
name and number to a point with X and Y coordinates. Input to the geocoding function are address
name, address number, optionally the zip code and the textual description of the location where the
road falls in, a minimum acceptable score for the name matching algorithm, as well as the number of
alternative results that will be returned by the function.
The function may accept one or multiple requests for geocoding. For this reason
GeocodeAddressRequest parameter is a collection of GeocodeAddress element each one being a
geocoding request. In case of multiple requests the client has to specify a unique id for each request
which will be returned in the results to identify the corresponding geocoding response. The function
returns 1 if successful, otherwise <> 1 with the error description returned in geocodeAddressResults
output parameter.

INPUT PARAMETERS DESCRIPTION

GeocodeAddressParameters is used to pass the geocoding requests to the server. As already
described in the function description GeocodeAddress supports multiple geocoding requests at the

Chapter: GeocodeAddress

=

Geointelligence Map Server — APl Reference

same time. GeocodeAddressRequest element is a collection of GeocodeAddress elements each one

supplying information about an address to be geocoded.

id is an identifier for the request which will be returned in results in order for the client to be
able to identify the request — response pair. id attribute is not involved in the geocoding
process.
addressName is the address name as specified by the client. This attribute may be used to
pass roads corner names, in which case the road names have to be separated by a “+”
symbol.
addressNumber is the address number requested and may be omitted. The addressNumber
can consist of both numeric and alphanumeric characters i.e. “15A”.
addressNumberTolerance: is the tolerance in address numbering. If the requested street
number is not found the server searches for the closest number as long as its difference from
the requested street number is less than or equal to the given tolerance. Default value O,
meaning that failure to find the exact number returns road centroids.
addressZip is the zip code of the address and may be omitted.
addressLocation is the location of the address and may be omitted. In Map Server 2 address
locations can be restricted based on matching score and type (see addressLocationMinScore
and addressLocationRestrictions.
addressRegion is the region of the address
addressPrefecture is the region prefecture of the address (2.5+)
minScore is the minimum acceptable score below which the name matching algorithm
scoring function will reject database names when comparing with the address name supplied
(addressName). It falls in the range 0.3 — 1.0. If this attribute is omitted a value of 0.9 will be
used for minScore.
Two additional attributes have been introduced in Map server 2: addressLocationMinScore
and addressRegionMinScore. These attributes are similar to minScore but they apply to
addressLocation and addressRegion.
maxResults supplies the number of different geocoding score classes that road names that
fall into will be returned. Internally the algorithm ranks results in geocoding score classes.
For example one class would be the different database names with a geocoding score of
0.975 against the supplied address name, another class would be database names with score
0.84 etc. If maxResults = 1 then all results that fall in the best rank category will be returned.
If maxResults = 2 then all results that fall in the best and the next rank category will be
returned etc.
Offset: Results are normally placed on streets. However an offset in meters can be specified
in order to place results on building blocks.
addressXXXXXScoreWeight: Map Server 1 scores results based on addressName. This was not
accurate most of the time. Therefore score weight factors have been introduced in Map
Server 2. These weighting factors can influence final geocoding score if properly specified. If
score weight for a particular address part is -1 then it is ignored. The default behaviour is that
of Map Server 1, that is, only addressName influences final score
(addressNameScoreWeight=1)
addressLocationRestrictions restricts what location can be:

o 1: Municipality

o 2: Municipality district

o 4:Settlement

o 8:Neighbourhood
This parameter accepts combinations of the above. For example to accept all possible
locations you can specify 15 (=1+2+4+8). This parameter has been introduced in Map Server
2.2+
countryRestrictions applies the following country restrictions:

o 1:Greece

o 2:Cyprus

Chapter: GeocodeAddress

N

Geointelligence Map Server — APl Reference

o 3:Greece+ Cyprus

The coordinateSystem parameter is optional and is used to supply the coordinate system name (EGSA
or WGS84) when a projection is necessary. EGSA is the default and will be used if this parameter is
omitted.

OUTPUT PARAMETERS DESCRIPTION

GeocodeAddressResults is used to return the actual geocoding results to the client. For each request
found in GeocodeAddressParameters there is the matching response in GeocodeAddressResults.

GeocodeAddressResponse element is a collection of GeocodeResults elements each one matching the
equivalent GeocodeAddress element in GeocodeAddressRequest collection as this was described
previously. The association takes place through the id attribute. Furthermore each GeocodeResults
element has an attribute name description which gives textual information about the geocoding
process for the matching request. Depending on the geocoding request parameters GeocodeResults
contains a number of GeocodeResult elements which are the actual results of the geocoding. Each
GeocodeResult returns

e foundAs: the name of the road (or both names in cases of road corners) as found in the
database
e matchedNumber: the number matched
e geocodingScore: the geocoding score
e Zip: the zip code
e municipality: municipality
e addressRegion : prefecture
e gddressSettlement: settlement
e addressNeighborhood: neighborhood
e pointX, pointY: the point coordinates
e description : and a short description of the result if any.
e resultType: describes the type of the result
o 0:none
1: address point
2: location centroid
3: road centroid
23: municipality district centroid
24: municipality centroid
25: settlement centroid
26: neighborhood centroid (approximate)
27: zip centroid (approximate)

O O OO O O O O

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The function
returns 1 if the connection was successful and <> 1 if the connection attempt failed.

EXAMPLE

Chapter: GeocodeAddress

w

Geointelligence Map Server — API Reference

REQUEST

<Authlnfo connectionHandle="123456"/>
<GeocodeAddressRequest>
<GeocodeAddress id="1" addressName="A8nvaq" addressNumber="5"
addressZip=""
<GeocodeAddress id="2" addressName="Mavéppouv" addressNumber="6"
addressZip="" addressLocation="" minScore="0.9" maxResults="1"
coordinateSystem="WGS84"/>
</GeocodeAddressRequest>

RESPONSE

<GeocodeAddressResponse errorMessage=""/>
<GeocodeResults id="1" description="">
<GeocodeResult foundAs="" geocodingScore=
pointX="" pointY="" description=""/>
<GeocodeResult foundAs="" geocodingScore=
pointX="" pointY="" description=""/>
</GeocodeResults>
<GeocodeResults id="2" description="">
<GeocodeResult foundAs="" geocodingScore=
pointX="" pointY="" description="" />
<GeocodeResult foundAs="" geocodingScore=
pointX="" pointY="" description=""/>
</GeocodeResults>
</GeocodeAddressResponse>

zip="" municipality=

zip="" municipality=

zip="" municipality=

"" zip="" municipality=""

addressLocation="A8rva" minScore="0.8" maxResults="3"/>

Chapter: GeocodeAddress

N
N

Geointelligence Map Server — API Reference

10. FREETEXTSEARCH

IMPORTANT

Note that the following table is not complete. Elements/attributes not mentioned here are subject to
changes and should not be used.

Input Parameters

authinfo

FreeTextSearchParameters

Output Parameters
FreeTextSearchResponse

M IN [value _|Minv__|

URNENEY XX\I\I
n-u n-u

string

String
{0,1,2}
{EGSA,
WGS84}

string

{1, 2, 3, 4,
5,6, 7,8,
10, 11, 12}

[0-511]
{0,1}
default 0
[0-1]
{0,1,2}

2.0

2.0
2.0
2.0

2.0

2.0

2.0

2.0
{11,12}
added in
2.5

2.5

2.0

2.0
2.1

Chapter: FreeTextSearch

Geointelligence Map Server — API Reference

maxX - - double 2.5
maxY - - double 2.5
number - - integer 2.0
ResultString * 2.0
string - - string 2.0
stringType - - Integer {1, 2.0
2,3, 4,05,
6, 7}
return - - integer 2.0

DESCRIPTION

FreeTextSearch is an advanced service allowing a number of scenarios regarding finding addresses.
The service has been designed as an advanced alternative of the GeocodeAddress service. As a
reminder, GeocodeAddress allows the client to search for address components and get geocoded
addresses in response (i.e. normalized address components with coordinates). FreeTextSearch
complements GeocodeAddress by providing advanced features such as the following:

e Client is not required to enter the address in parts. The address can be provided as one
string. (This can be considerably slower than GeocodeAddress for large multi-word strings,
like 10-100 times slower)

e (Client may use the service for word identification, search, auto complete (see getGeoResults
attribute)

e Client may fine tune scoring when entering address in parts. If for example it is known that
region is correct (e.g. ‘N. ATTIKHZ’ has been selected from auto complete results), but road is
not accurate (e.g. Beclovikg), the client can search for an address using min score 1 for
region and not using min score constraints for the street name.

The aforementioned points describe the main differences between GeocodeAddress and this function.
There are other differences as well mainly stemming from the fact that the free text search operation
is in general more difficult and time consuming.

Before entering into the request and response details, to examples of typical use case scenario are
presented.

A typical use case scenario would be:

- First using FreeTextSearch in auto complete mode (getGeoResults=2) to get a set of
proposed addresses matching user input and then

- Use it again in search mode (getGeoResults=1) this time using as address parts the ones user
has previously selected.

For example, auto complete of ‘©ecAovikng 189 ABrjva’ returns the following autocomplete match:

OeoAovikng 189 ABRva

1 @eocalovikng - AGHNA
catld: 1 (street) catld: 5 (Area)
queryWordSequence: 0 queryWordSequence: 2

Chapter: FreeTextSearch

(@)

Geointelligence Map Server — APl Reference

The client could manually identify ignored words and inject them to the proposed matched item at
will. In the previous example 189 is ignored by free text search, as the autocomplete mode doesn’t
validate street numbers. A client could easily find that 189 were ignored and that it matches a
number by using a regular expression. Therefore 189 could be injected to the result before displaying
it at the Ul. For example this proposal could be ‘Oeccalovikng 189, AOHNA'.

Once a user selects this proposed matched item, the client could then use FreeTextSearch with
getGeoResults=1 to search for an address with the following parts: @ecoalovikng as street, AOHNA as
area, 189 as number (or unknown).

The last call would return the following GeoResult along with the matched items:

Oeoocalovikng 189, AGHNA, 11852, A.A. AGHNAIQN, A. AGHNAIQN, N. AGHNQN (23.7068 37.96466)

Multiple fields use case scenario

In the previous use case user input was expected to be entered into one field. However a similar
approach could also be used if the client Ul supports different text input fields.

If for example a user is expected to enter a region into a text input field then FreeTextSearch could be
called in auto complete mode specifying that given input is a region. Auto-completing ‘ATTI’ as a
region for example would result into:

ATTI Comments

1 N. ANATOAIKHZ ATTIKHZ
catld: 2 (region)
queryWordSequence: 0
2 N. ATTIKHX
catld: 2 (region)
gueryWordSequence: 0

3 N. AGHNQN Returned because
catld: 2 (region) ‘vopopxia ABnvwv' s
queryWordSequence: 0 used like a synonym to

‘Nopog Attikng’

4 N. ATTIKHZ

catld: 2 (region)
gueryWordSequence: 0

Note: The 4 aforementioned result may seem weird, but the fact is that there is no ‘N. ATTIKHZ'.
Attica region is split into four sections: N. MEIPAIQZ KAI NHZQN, N. AYTIKHZ ATTIKHZ, N. ANATOAIKHZ
ATTIKHZ, N. AGHNQN. Each section matches to ATTI though, due to synonym function.

If the user selects the second result and starts typing an area name, e.g. ‘AOH’ the client could auto
complete the area name by setting region min score 1 and let area without score constraints:

N. ATTIKHZ (region, ms:1) AOH (settlement, no ms)
1 N. AGHNQN AOHNA
catld: 2 (region) catld:5 (settlement)
queryWordSequence: 1 queryWordSequence: 2

Chapter: FreeTextSearch

N

Geointelligence Map Server — API Reference

2 N. ATTIKHZ
catld: 2 (region)
queryWordSequence: 1
3 N. ATTIKHZ
catld: 2 (region)
queryWordSequence: 1
4 N. ATTIKHZ
catld: 2 (region)
queryWordSequence: 1

BAOGY AITINAZ

catld: 5 (settlement)
gueryWordSequence: 2
BAGY MEOANQN
catld: 5 (settlement)
queryWordSequence: 2
BAQOY ZAANAMINAZ
catld: 5 (settlement)
gueryWordSequence: 2

The same applies if the user selects the first result and starts typing a street name, e.g. ‘OEY’

catld: 2 (region)

queryWordSequence:

catld:5 (settlement)

queryWordSequence:

N. ATTIKHZ (region, ms:1) AOHNA (settlement, ms:1) OEZ (street)

1 N. AGHNQN AGHNA @eooalov
catld: 2 (region) catld:5 (settlement) catld:1 (street)
queryWordSequence: qgueryWordSequence: queryWordSequence:
N. AGHNQN AGHNA O¢omibog
catld: 2 (region) catld:5 (settlement) catld:1 (street)
queryWordSequence: queryWordSequence: queryWordSequence:
N. AOGHNQN AGOHNA Osooaliag
catld: 2 (region) catld:5 (settlement) catld:1 (street)
queryWordSequence: gueryWordSequence: gueryWordSequence:
N. AOGHNQN AOHNA Qeomiewv
catld: 2 (region) catld:5 (settlement) catld:1 (street)
queryWordSequence: queryWordSequence: queryWordSequence:
N. AGHNQN AGHNA OEe0oTPWTEWG
catld: 2 (region) catld:5 (settlement) catld:1 (street)
queryWordSequence: queryWordSequence: queryWordSequence:
N. AGHNQN AGHNA Oeonpwrtiag
catld: 2 (region) catld:5 (settlement) catld:1 (street)
queryWordSequence: queryWordSequence: queryWordSequence:
N. AGHNQN AGOHNA @eooalovikng

catld:1 (street)

queryWordSequence:

And so on...

INPUT PARAMETERS DESCRIPTION

FreeTextSearchParameters is used to pass the address request to the server. The function always
returns one or more sets of address components that match the given input. These sets are called
Matchedltems. Each Matchedltem is a normalized address component matching one of the query
words. Whether this set of matched items will also contain geocoded addresses depends on the
getGeoResults attribute’s value. If the value of this attribute is 1 (which is the default value) then the
client will get all geocoding results. By using value of 0 geocode results are not returned.

Returning only Matched ltems without geocoding results is faster and can be useful for address
validation and address auto complete scenarios. Therefore to use FreeTextSearch in autocomplete
mode please set getGeoResults attribute to 0, while for typical geocoding scenarios use getGeoResults
with value 1, or omit the attribute completely.

Chapter: FreeTextSearch

(00

Geointelligence Map Server — APl Reference

Searching can be done in two forms. The simple form is using one search text string

e searchString is the attribute of the FreeTextSearchRequest element required to pass the free
text to be matched.

The second form allows more advanced searching scenarios using the Searchltems structure, instead
of using the searchString attribute. The Searchitems element may contain one or more Searchitem
elements, with each one specifying a part of the searching address. Each element has a searchString
attribute specifying the part of the address and a searchType attribute declaring what is the type of
the part. The searchType attribute may have one of the following values:

e 1:Street
: Region
: Municipality
: Municipality District
: Area (City, Village etc.)
: Neighbourhood
: Postal Code
: Street Number

e 10: Unknown

e 11:Street Or City Or Region

e 12: Combination (use searchTypes to build the custom search type)
The searchTypes attribute is used when searchType is 12 (available from v2.5). A custom search type
combination can be built then using the following values:

®
00O NO UL~ WN

e 0:Country
e 1:Street
e 2:Region

e 4: Municipality

e 8: Municipality District

e 16: Settlement

e 32:Neighborhood

e 64:Zip code

e 128:Island

e 256: Number
Optional attributes useMinScore and minScore are used so the user can fine tune the search
operation per item. minScore is taken into consideration only if useMinScore is 1. Potential results
whose parts match the given item with less than the given minimum score are not returned.
searchOp: Specifies the approximate string search operation:

e 0:Contains

e 1:StartsWith

e 2:EndsWith

OUTPUT PARAMETERS DESCRIPTION

The function returns a FreeTextSearchResponse containing an XML String (as usual) with root element
the FreeTextSearchResponse (duplicate name, no error). The xml element wraps the error message if
any (with an attribute) and the results if any as an array of FreeTextSearchResult elements. The
function returns 1 if successful, otherwise <> 1. Each FreeTextSearchResult is a multipart element
containing:

e the score (score attribute). An estimation of the assumption’s correcteness.

Chapter: FreeTextSearch

X0

Geointelligence Map Server — APl Reference

e an assumption (MatchedItems element)
e the address results (array of GeoResult elements)

Please note that a FreeTextSearchResult will always have a score and a Matchedltems collection but
may return not addresses whatsoever. (It is guaranteed though that there will be another
SherlockResult with higher score that does).

Each Matcheditem element represents a matching between a given search word and an address
component:

e catld:

: street name

: region

: municipality

: municipality district (may be the same with 3)

: Area (e.g. city, village etc.)

: neighbourhood

: postal code

:Island

: Street number

: Country

o 20: Prefecture (region prefecture, e.g. N. MEIPAIQZ KAl NHZQN)

e queryWordSequence: the index of the given word the Matchedltem has been matched to.
The word index is zero-based and is calculated after merging all the search items’ strings and
splitting the final string.

e Name: the normalized address component.

0 O 0O O 0 O 0O O 0 O
OwVWou~NOTULLE, WN -

Each GeoResult element has the following attributes:

e pointX: address X coordinate

e pointY: address Y coordinate

e minX, minY, maxX, maxY: the extent containing the georesult polygon in case of regions,
municipalities etc.

e number: 0 or the address’ number

e There are other attributes not documented and should be ignored

And should contain an array of ResultString elements. Each element contains an address component
described by the following attributes:
e string: the name of the component
e stringType: the type of the component.
: street name
: region
: municipality
: municipality district (may be the same with 3)
: Area (e.g. city, village etc.)
: neighbourhood
: postal code
:Island
: Street number
: Country
20: Prefecture (region prefecture, e.g. N. MEIPAIQZ KAl NHZQN)

@)

0O O 0 o o0 o 0 O O O
O wVWwoONOTULLE WNPRE

Chapter: FreeTextSearch

o

Geointelligence Map Server — APl Reference

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The function
returns 1 if the connection was successful and <> 1 if the attempt failed.

EXAMPLE

REQUEST

<Authlnfo connectionHandle="123456"/>
<FreeTextSearchRequest searchString="A. Kndioiag 97 aunehdknmol" />

RESPONSE

The response is truncated for simplicity.
Please note that in this example only the first SherlockResult has GeoResults. This is a real example.

<FreeTextSearchResponse>
<FreeTextSearchResult score="0.998687495050005" resultType="0">
<Matchedltems>
<Matchedltem catld="1" dbld="2619" dbWordSequence="1" queryWordSequence="1"
localScore="1" name="Aewdbdpog Kndioiag" lang="0"/>
<Matchedltem catld="6" dbld="99010163" dbWordSequence="0" queryWordSequence="3"
localScore="1" name="AMIMEAOKHMOI" lang="0"/>
</Matchedltems>
<GeoResults>
<GeoResult dbld="0" pointX="23.766332" pointY="37.9922539" number="97" distance="0"
resultMatchType="1">
<ResultString string="Aewdopog Kndioilag" stringType="1"/>
<ResultString string="A@HNA" stringType="5"/>
<ResultString string="A@HNAIQN" stringType="4"/>
<ResultString string="A@HNAIQN" stringType="3"/>
<ResultString string="N. AOHNQN" stringType="2"/>
<ResultString string="11526" stringType="7"/>
</GeoResult>
<GeoResult dbld="0" pointX="23.766332" pointY="37.9922539" number="97" distance="0"
resultMatchType="1">
<ResultString string="Aswdopog Kndoiag" stringType="1"/>
<ResultString string="A@HNA" stringType="5"/>
<ResultString string="AOHNAIQN" stringType="4"/>
<ResultString string="A@HNAIQN" stringType="3"/>
<ResultString string="N. AOHNQN" stringType="2"/>
<ResultString string="11523" stringType="7"/>
</GeoResult>
</GeoResults>
</SherlockResult>
<SherlockResult score="0.989704999648" finallaroScore="0" resultType="0">

Chapter: FreeTextSearch

[HRY

Geointelligence Map Server — API Reference

<Matchedltems>
<Matchedltem catld="1" dbld="8821" dbWordSequence="2" queryWordSequence="1"
localScore="1" name="A' ndpodog Kndoilag" lang="0"/>
</Matchedltems>
</ FreeTextSearchResult >
< FreeTextSearchResult score="0.499343745050005" finallaroScore="0" resultType="0">
<Matchedltems>
<Matchedltem catld="1" dbld="2619" dbWordSequence="1" queryWordSequence="1"
localScore="1" name="Aewdopog Kndoiag" lang="0"/>
</Matchedltems>
</ FreeTextSearchResult >

<!-- Many other FreeTextSearch results truncated for simplicity -->

< FreeTextSearchResult score="0.451275" finallaroScore="0" resultType="4">
<Matchedltems>
<Matchedltem catld="5" dbld="12211402" dbWordSequence="1" queryWordSequence="3"
localScore="0.915" name="MONH AMNEAAKH" lang="0"/>
</Matchedltems>
</ FreeTextSearchResult >
</FreeTextSearchResponse>

Chapter: FreeTextSearch

N

Geointelligence Map Server — API Reference

11. REVERSEGEOCODEADDRESS

inputparameters | M TN Value | Minv
ETCETM Authinfo
Ccomectionandle

v % string

T ReverseGeocodinghequest - -
v double
(0.0)
[0.0,360.0
1(-1.0)

x

x

integer
(20)

x

{EGSA,

WGS84}

Integer (0) 2.7
Output Parameters
ReverseGeocodeResponse

double

integer

integer

double
integer

x
=
=
=
=
=
=
=
T
T
[

DESCRIPTION

The ReverseGeocode method is used to identify the road names and numbers that are closest to a
given input point on the map. With the addition of settlementStrategy attribute its function can be
altered so that it returns the nearest settlement (plus municipality and region).

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

Chapter: ReverseGeocodeAddress

w

Geointelligence Map Server — APl Reference

e The ReverseGeocodingRequest contains the X and Y coordinates of the point specified. If the
returnRoadCentroid is set to 0, the returned result points are those closest to the input point,
whereas if it is set to 1, the returned points are those closest to the middle of the
corresponding road segment. The request may also contain an azimuth specification (e.g. if
the point comes from a GPS tracking system) set in the pointAzimuth attribute.

The tolerance of the geocoding may be specified using the distanceTolerance attributes (meters) for
the XY plane and the azimuthTolerance (degrees) for the Z plane. Finally the coordinate system used
to express the coordinates in both the request and reply messages can be specified with the
corresponding attribute.

OUTPUT PARAMETERS DESCRIPTION

The response to the ReverseGeocode request is a collection of ReverseGeocodingResult elements
which represent the addresses closest to the specified point. Each element-match contains the X and
Y coordinates of the result, the corresponding road name, address, zip code and municipality and
finally the distance from the initially specified point. Notice that two road numbers may be returned
representing the addresses at the two sides of the road. A client may select the ‘correct’ road number
based on the pointOnLeftSide value. When pointOnLeftSide equals to 1 then the input point is on the
side of the roadNumber1, otherwise it is on the side of roadNumber2.

If settlementStrategy has value 1 then it is guaranteed that the first returned result (if any) will have
settlement information, that is network information is discarded if it isn’t contained in a settlement
area.

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The function
returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE
<AuthlInfo connectionHandle="123456"/>

REQUEST

<ReverseGeocodingRequest pointX="" pointY=
returnRoadCentroid="" distanceTolerance=
coordinateSystem="" />

pointAzimuth=
""azimuthTolerance=

RESPONSE
<ReverseGeocodingResponse>

<ReverseGeocodingResult pointX=

roadZip=""

pointY=""roadName="" roadNumber=
roadMunicipality="" distanceFromInputPoint="" />

</ReverseGeocodingResponse>

Chapter: ReverseGeocodeAddress

S

Geointelligence Map Server — API Reference

12. BATCHREVERSEGEOCODE

[input parameters | g TN Value | Minv
ETCCTM Authinfo 20

string 2.0

BatchReverseGeocodePara
meters

double
(0.0)

I
o

J BT

[0.0,360.0 2.0
1(-1.0)

integer 2.0
(20)

Output Parameters

BatchReverseGeocodeResp
onse

N e e N N
o o o o o

ouble 2.0

d
double 2.0

X

[=]
]
[]
[-]
[+
[=71
[=71
]
= |
[=]
[="1
[=]

Chapter: BatchReverseGeocode

DESCRIPTION

The BatchReverseGeocode method is used to send batches of reverse geocoding requests. For more
information please refer to ReverseGeocode method.

INPUT PARAMETERS DESCRIPTION

w
o

Geointelligence Map Server — API Reference

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The request contains a set of ReverseGeocodePoint objects each identified by a unique id. The
attributes used in this function are described in ReverseGeocode.

OUTPUT PARAMETERS DESCRIPTION

Similar to the response of ReverseGeocode there is a collection of ReverseGeocodingResult objects
one for each requested point, identified by the respective id. For more information about the
attributes please refer to ReverseGeocode method.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The function
returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE
<AuthlInfo connectionHandle="123456"/>

REQUEST
<BatchReverseGeocodingRequest coordinateSystem=
<ReverseGeododePoint id="" pointX="" pointY="" pointAzimuth=
distanceTolerance="" azimuthTolerance=""/>

returnRoadCentroid=

>

</BatchReverseGeocodingRequest>

RESPONSE

<BatchReverseGeocodingResponse>
<ReverseGeocodingResults id="">
<ReverseGeocodingResult pointX="" pointY="" roadName="" roadNumber=
roadZip="" roadMunicipality="" distanceFromInputPoint="" />

</ReverseGeocodingResults>

</BatchReverseGeocodingResponse>

Chapter: BatchReverseGeocode

(@)

Geointelligence Map Server — API Reference

13. GEOFENCE

inputparameters | M [N _|Value | Minv__

LN (Authinfo

I connectionHandle Y % string

EEEEETNN | GeofenceRequest [= - L
layerName Y (x st

Output Parameters
GeofenceResults

DESCRIPTION

The Geofence method call lets the user identify whether one or more pairs of coordinates (points) lie
inside a layer consisting of certain polygon shapes. The points are given as parameters, however the
layer has to be predefined in the server init file as Custom Layer (see Appendix for Custom Layers).

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

e JayerName: the name of the Custom layer that should be queried for any polygon shapes
that contain any of the given points

e resultFieldName: the name of the attribute of the polygon shapes whose value should be
returned so that the polygons can be identified by the client.

e The coordinateSystem attribute specifies the system used to express the coordinates of the
point in the request and the of the search results.

e Each request may contain a number of Point elements with each of them having an id
(pointld), and a pair of coordinates (pointX, pointy)

Chapter: GeoFence

~N

Geointelligence Map Server — APl Reference

OUTPUT PARAMETERS DESCRIPTION

Apart from the usual errorMessage returned if something goes wrong the response consists of a set
of GeofenceResult elements. There should be as many results as the input points, with each result
having a pointld respective to the id of one of the given input points. The polygonld attribute contains
the id of the polygon (actually the order of the shape as defined in the custom layer). The
polygonResult attribute contains the value of the attribute that has been queried using the
resultFieldName input parameter.

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful and <> 1 if the connection attempt failed.

EXAMPLE
REQUEST

<AuthlInfo connectionHandle="xxxxx" />

<GeofenceRequest coordinateSystem="" layerName=
<Point pointld="" pointX="" pointY="" />
<Point pointld="" pointX="" pointY=""/>
<Point pointld="" pointX="" pointY=""/>

resultFieldName="">

</GeofenceRequest>

RESPONSE

<GeofenceResponse>
<GeofenceResult pointld="" polygonld="" polygonResult=""/>
<GeofenceResult pointld="" polygonld="" polygonResult=""/>
<GeofenceResult pointld="" polygonld="" polygonResult=""/>
<GeofenceResult pointld="" polygonld="" polygonResult=""/>

</GeofenceResponse>

Chapter:

(00

Geointelligence Map Server — API Reference

14. NEARESTFEATURES

alue

<

Input Parameters
authinfo
string

NearestFeaturesParameters

double (0.0)

{o]1}* (<empty>)

integer (1)

{0,1}
Output Parameters
NearestFeaturesResponse

string

double

string

BN NN

DESCRIPTION

‘The NearestFeatures method is used to identify and retrieve features contained in the
specified layers and located within a given radius of an input point.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

e The pointX and pointY attributes contain the coordinates of the point around which the
nearest features will be identified.

Chapter: NearestFeatures

w
\o)

Geointelligence Map Server — APl Reference

e The layerMask attribute is similar to the drawLayerShapesMask and drawLayerLabelsMask of
the GetFulllmage and GetimageForExtent functions and is a string consisting of characters 0
and 1 that represent which of the available layers will be included in the feature search.

e The distanceTolerance attribute specifies the radius of the circular area around the specified
point within which the search for features will be performed.

e The maxNumberOfFeatures sets an upper bound on the number of search results that may
returned.

e The coordinateSystem attribute specifies the system used to express the coordinates of the
point in the request and the of the search results.

e The getFieldValues is a bit (0-1) attribute indicating whether all available information fields
for the search results should be retrieved or if only their coordinates are required.

OUTPUT PARAMETERS DESCRIPTION

The response to a NearestFeatures query consists of LayerOutput subelements that define the layers
in which features were located. For each layer (identified by a layerld) there is a listing of the available
information fields as LayerField elements. Each field is identified by

e fieldID,
e fieldName and a
e fieldType attribute, specifying the data type of the stored information.

The results of the NearestFeatures search are given as FeatureOutput elements. The coordinates of
the result point are stored in the pointX and pointY attributes, while the distance from the original
input point is stored in the distanceFrominputpoint attribute. Finally, if the user requested the
information for each result point, the FieldValue element list contains the available fields and
respective values. Please note that fields are referenced by their fieldld only and additional
information about the field name and type have to be cross-referenced to the initial field list of the
response.

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful and <> 1 if the connection attempt failed.

EXAMPLE

REQUEST

<Authlnfo connectionHandle="123456"/>

<NearestFeaturesRequest pointX="" pointY="" [ayerMask=
distanceTolerance="" maxNumberOfFeatures=
coordinateSystem="" getFieldValues=""/>

RESPONSE
<NearestFeaturesResponse>
<LayerOutput layerld="">
<LayerField fieldld="" fieldName="" fieldType=""/>

Chapter: NearestFeatures

IS
o

Geointelligence Map Server — API Reference

<LayerField fieldld="" fieldName="" fieldType=""/>
<FeatureOutput pointX="" pointY="" distanceFromInputPoint="">
<FieldValue fieldld="" value="" />
<FieldValue fieldld="" value="" />

</FeatureOutput>

<FeatureOutput pointX="" pointY="" distanceFromInputPoint="" >
<FieldValue fieldld="" value="" />
<FieldValue fieldld="" value="" />

</FeatureOutput>
</LayerOutput>

</NearestFeaturesResponse>

Chapter: NearestFeatures

=

Geointelligence Map Server — API Reference

15. ADDUSERLAYER

Input Parameters L Im [N lvaue |

T Authinfo
B comectiontiandle Y % string

addUserLayerParameters

string

—_
o

=
=

—

double (max)

{EGSA, WGS84}

{simple, scale}

{line, point, polygon,
raster}

Hex RGBA (00000000)

—_
o

~
[EE

—

double [0.1,0.9] (0.5)

double [0.0,1.0]

integer (0)

{circle, square}

A
o)
3
S
—
<
v

°
=

Chapter: AddUserLayer

D
N

Geointelligence Map Server — APl Reference

RasterRenderer - -
RasterDrawOptions - -
rasterAlpha x v integer [0,255]

LayerLabeler - -
Data - =
Output Parameters
addUserLayerResponse addUserLayerResponse - -

errorMessage - v
return - - integer

DESCRIPTION

Using the AddUserLayer function, the user can create one or more custom layers, valid for
the duration of his user session, and then import into these layers any data he wishes to
display on the map. The user layers are processed and displayed exactly like the built-in
server layers.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The name attribute of the AddUserLayerRequest element specifies its descriptive name. The
displayLayer and displayLabel attributes are bit (0-1) and when set to 1 will cause the layer and its
labels (if available) to be displayed. The notVisibleabove and notVisiblebelow attributes define the
scales over and under which the layer will not be displayed. They are expressed in meters per pixel.
Finally the coordinateSystem of the layer and the desired transparency level can be set in the
respective attributes.

The LayerRenderer subelement specifies how the new layer will be displayed on the map. The
following attributes are available:

e type: this attribute takes the values “simple” or “scale”. In the first case the same renderer
will be used for all display scales. In the second case different renderers may be defined for
scale ranges and thus-fine tune the appearance of the layer.

e rendererType: this parameter defines the type of layer the renderer will be used to display.
Four values are possible, namely line, point, polygon or raster, corresponding to the four
types of layers that may be displayed.

e name: this is a descriptive name for the renderer.

The LineRenderer subelement is used to define how linear data is displayed. It contains the
LineDrawOptions element whose attributes are the following:

e width: the width of the line in pixels

e color: the color of the line in the hexadecimal format RRGGBBAA, where R,G,B are the base
colors and A is the alpha-channel (transparency)

e rounded: if set to 1 any angles of the line will be displayed rounded

e antialiased: if set to 1 the lines will be displayed using antialising and thus will not have
jaggies (stairstep-like lines that should be smooth)

e draw: if set to 0 the line will not be displayed

Chapter: AddUserLayer

D
w

Geointelligence Map Server — APl Reference

e edgeSharpness: this attribute takes values between 0.1 and 0.9.
e lineDecoration: defines the decoration of the end of the line. The value of “arrow” may be
specified to indicate the direction of the line.

The PointRenderer is used to define how point data will be displayed. It contains the following
attributes:

e radius: specifies the size of the shape used to display a point, in pixels
e shape: specifies the shape used to display a point. Possible values are circle and square.

The PointRenderer may also contain the LineDrawOptions (described above) and the FillDrawOptions
elements. The FillDrawOptions has the following attributes:

e color: the color of the shape in HEX RGBA format.
e bitmap: the filename of a bitmap locally stored in the server that will be used to display a
point instead of a shape (circle or square).
e bitmapAlpha: the transparency of the bitmap
e bitmapBytes: the user can upload a custom bitmap for representing a point. This attribute
will then contain the bytes of the bitmap image (BMP) in base64 encoded form.
e draw: if set to 0 will cause the points not to be shown on the map
e stretchBitmapsToPixels: defines the radius of the bitmap in pixels. As the bitmap will have a
fixed original size, setting the size to a different value will cause it to be stretched or shrunk.
Finally the RasterRenderer specifies the appearance of a raster image displayed on the map.
The only available parameter is the rasterAlpha attribute which defines the transparency of
the image.

OUTPUT PARAMETERS DESCRIPTION

The AddUserLayerResponse is empty if the call was successful. Otherwise it contains a description of
the error encountered.

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

FUNCTION RESULT DESCRIPTION

‘The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

REQUEST

<Authinfo connectionHandle="123456"/>
<AddUserLayerRequest name="" displayLayer="" displayLabel=
notVisibleAbove="" notVisibleBelow=
layerTransparency="" coordinateSystem="">
<LayerRenderer type="simple" name="eparxiakodiktio" rendererType="line">
<LineRenderer>
<LineDrawOptions width="3" color="ff0O000ff"
rounded="0" antialiased="0" draw="1" edgeSharpness="0.6"/>
</LineRenderer>

Chapter: AddUserLayer

D
D

Geointelligence Map Server — APl Reference

<PointRenderer radius="15" shape="square">
<LineDrawOptions width="4" color="ffffOOff" rounded="0"
antialiased="1" draw="1" edgeSharpness="0.6" />
<FillDrawOptions color="ff0000ff" bitmap="" bitmapAlpha="255"
draw="1" />
</PointRenderer>
</LayerRenderer>
<lLayerlLabeler>
</LayerLabeler>
<Data>
</Data>
</AddUserLayerRequest>

RESPONSE
<AddUserLayerResponse/>

Chapter: AddUserLayer

SN
o

Geointelligence Map Server — API Reference

16. ADDUSERLAYERDATA

imputparameters | g T Vi

ETTTT M Authinfo
Ccomectiontandle v x sting

X T | AddUsertayerDataRequest ||| = |

DO lyerName /% sting (<emptys)

{EGSA, WGS84}

string

integer (1)

—_
=

(IR
—

—_
=

(IR
—

Output Parameters

addUserLayerDataResponse

ENEN
« Il
BB
|
EFAER
- N
EEA
- N
EAEN
- N
ENEA
- 1IN
=l
- 1IN
=
- N
EAEN
v
- 1IN
=
|
il
ElEA
« Il

|
ENEN
-
ENEN

Chapter: AddUserLayerData

DESCRIPTION

D
(@)

Geointelligence Map Server — APl Reference

After the user has created a custom layer using the AddUserLayer function, he must call the
AddUserLayerData to populate it with the desired data.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

Within the AddUserLayerDataRequest element, the attribute layerName specifies the name of the
previously added User Layer where the data is to be stored. The data itself is included within the Data
subelement, which also enables the specification of the coordinate system to be used. Nested within
the data element are the data representations, which are one or more of the following:

e Point elements, each having the attributes
o labelString: an optional label
o coordinates: the X and Y coordinates separated by a semi-colon (X;Y)

e Polyline
o labelString: an optional label
o Path
= coords: a list of X and Y coordinates separated by semi-colons
(X1;Y1;X2;Y2;...;Xn;¥Yn)
e Polygon

o labelString: an optional label
o ExteriorRing
= coords: a list of X and Y coordinates separated by semi-colons
(X1;Y1;X2;Y2;...;Xn;¥Yn)
o InteriorRing (optional)
= coords: a list of X and Y coordinates separated by semi-colons
(X1;Y1;X2;Y2;...;Xn;¥Yn)

OUTPUT PARAMETERS DESCRIPTION

The AddUserLayerDataResponse is empty if the call was successful. Otherwise it contains a
description of the error encountered.

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful and <> 1 if the connection attempt failed.

EXAMPLE

REQUEST
<AuthInfo connectionHandle="123456"/>

<AddUserLayerDataRequest layerName="">
<Data coordinateSystem="EGSA">

Chapter: AddUserLayerData

D
~N

Geointelligence Map Server — API Reference

<Point labelString="" coords="X;Y" />
<Point labelString="" coords="X;Y" />
<Polyline labelString="aPolyline">

<Path coords="400000.0;4200000;401000;4200000;402000.3;4250000.6"/>
<Path coords="408000.0;4200000;409000;4200000;410000.3;4250000.6" />

<LayerRenderer type="simple" name="" rendererType="line">
<LineRenderer>
<LineDrawOptions width="8" color="00ffffff" rounded="0"
antialiased="1" draw="1" edgeSharpness="0.6" />
</LineRenderer>
</LayerRenderer>
</Polyline>
<MultiPolygon labelString="aPolyline">
<Polygon>
<ExteriorRing coords="400000.0;4200000;410000;4200000;410000.3;
4250000.6;400000;4250000.6" />
<InteriorRing coords="402000.0;4210000;408000;4210000;408000.3;
4230000.6; 402000;4230000.6" />
</Polygon>
<LayerRenderer type="simple" name=
<PolygonRenderer>
<LineDrawOptions width="2" color="000000ff" rounded="0"
antialiased="1" draw="1" edgeSharpness="0.6" />
<FillDrawOptions color="ffffffff" bitmap="" bitmapAlpha="255"
draw="1" />
</PolygonRenderer>
</LayerRenderer>
</MultiPolygon>
</Data>
</AddUserlLayerDataRequest>

rendererType="polygon">

RESPONSE
<AddUserLayerDataResponse/>

Chapter: AddUserLayerData

S
(00

Geointelligence Map Server — API Reference

17.SETUSERRENDERER

Input Parameters T TN [Vae

T Acthinfo
Ccomectionttandie

v | x string
| SetUserRendererParameters IR e o A
ClayerName Y x string

B
- {simple, scale}

{line, point,
polygon, raster}

double (0.0)

Hex RGBA
(00000000)

{0, 1}

J [B R

double [0.1,0.9]
(0.5)
integer (1)

{arrow}
integer (1)
Output Parameters

0wl

SetUserRendererResponse

DESCRIPTION

This method allows the user to define a custom renderer for the users layers added.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

OUTPUT PARAMETERS DESCRIPTION

Chapter: SetUserRenderer

1SN
X0

Geointelligence Map Server — API Reference

The SetUserRendererResponse is empty if the call was successful. Otherwise it contains a description
of the error encountered.

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The function
returns 1 if the connection was successful and <> 1 if the connection attempt failed.

EXAMPLE

REQUEST

<AuthlInfo connectionHandle="123456"/>
<SetUserRendererRequest layerName="">
<LayerRenderer type="scale" name="ethnikodiktio" rendererType="line">
<LineRenderer minScale="500" maxScale="1000">
<LineDrawOptions width="2" color="ff0000ff" rounded="0"
antialiased="0" draw="1" edgeSharpness="0.0"/>
</LineRenderer>
<LineRenderer minScale="100" maxScale="500">
<LineDrawOptions width="3" color="ff0000ff" rounded="0"
antialiased="1" draw="1" edgeSharpness="0.0"/>
</LineRenderer>
<LineRenderer minScale="40" maxScale="100">
<LineDrawOptions width="4" color="ff0000ff" rounded="0"
antialiased="1" draw="1" edgeSharpness="0.0"/>
</LineRenderer>
<LineRenderer minScale="10" maxScale="40">
<LineDrawOptions width="5" color="ff0000ff" rounded="0"
antialiased="1" draw="1" edgeSharpness="0.0"/>
</LineRenderer>
<LineRenderer minScale="0" maxScale="10">
<LineDrawOptions width="6" color="ff0000ff" rounded="0"
antialiased="1" draw="1" edgeSharpness="0.0"/>
</LineRenderer>
</LayerRenderer>
</SetUserRendererRequest>

RESPONSE

<SetUserRendererResponse/>

Chapter: SetUserRenderer

o

Geointelligence Map Server — API Reference

18. SETUSERLABELER

[input parameters | T Vale
ETCCTM Acthinfo
Ccomectionandle

v string

SetUseriabelerparameters [P Ty TS
D yerame Y % sting

v % {simple, scale}

x

{clear, solid}

x

{left,
center,right}

{line, horizontal,
vertical }

{bottom, center,
top}

{0,1}

integer

string

points

integer (pixels)
Output Parameters
SetUserLabelerResponse

Chapter: SetUserLabeler

‘BN -E-E-E-E - .

integer

DESCRIPTION
This method allows the user to define a custom labeller for the users layers added.

=

Geointelligence Map Server — APl Reference

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The layer to be labelled is specified by the layerName attribute. The labeller itself is define in the
UserLabeler element having the following attributes:

e type: can be either simple (one labeller for all extents) or scale (different labellers depending
on the visible extent).

e name: an identifying name

e brushColor: the colour of the background behind the label text

e brushStyle: if set to solid the label will have a background color, if set to clear it will not

e angleTypeAllow: this attribute specifies the orientation of the label. Horizontal and vertical
are standard orientations while line orients the label according to the line being labelled.
More than one can be specified in a comma-seperated list.

e angleTypePrefer: if more than one orientations are allowed, this attribute denotes the
preferred one.

e horizontalPositioningAllow: this attributes specifies the horizontal position of the label in
respect to the point or line being labelled. It may be left, right or center. More than one can
be specified in a comma-seperated list.

e horizontalPositioningPrefer: if more than one positionings are allowed, this attribute denotes
the preferred one.

e verticalPositioningAllow: this attributes specifies the vertical position of the label in respect
to the point or line being labelled. It may be top, bottom or center. More than one can be
specified in a comma-seperated list.

e verticalPositioningPrefer: if more than one positionings are allowed, this attribute denotes
the preferred one.

e fieldName: specifies the layer field used to retrieve the label names from

e drawOnlyWithShape: if set to 1, the labels will be displayed only if the corresponding shapes
are visible on the map.

o |abelBuffer: defines a buffer in pixels around the label text to enable additional spacing
between neighbouring labels.

e minScale : defines the minimum extent above which the labels will be visible. Applicable only
for scale labellers.

e maxScale: defines the maximum extent below which the labels will be visible. Applicable only
for scale labellers.

s fontName: the font used for the label text

e fontStyle: the style of the label text

e fontSize: the size of the label text in pixels

e fontColor; the color of the label text

e minDistanceBetweenSamelLabels: the value of this attribute defines the how close two labels
can be positioned before a clash happens and one of the two is moved to a different
location.

OUTPUT PARAMETERS DESCRIPTION

The SetUserLabelerResponse is empty if the call was successful. Otherwise it contains a description of
the error encountered.

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

Chapter: SetUserLabeler

N

Geointelligence Map Server — API Reference

FUNCTION RESULT DESCRIPTION

"The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

REQUEST

<AuthlInfo connectionHandle="123456"/>
<SetUserLabelerRequest layerName="">
<lLayerLabeler name="BuiltUpArea" type="scale">
<LabelingProperties minScale="1000" maxScale="1000000"
fieldName="name_GQ" fontName="Tahoma" fontSize="7"
fontStyle="bold" fontColor="000000FF"
angleTypePrefer="line" angleTypeAllow="line"
brushColor="0" brushStyle="clear"
horizontalPositioningAllow="center,left"
verticalPositioningAllow="top"
horizontalPositioningPrefer="center"
verticalPositioningPrefer="top"
drawOnlyWithShape="1" labelBuffer="1"
minDistanceBetweenSamelabels="150"/>
<LabelingProperties minScale="40" maxScale="1000" fieldName="name_GQ"
fontName="Tahoma" fontSize="8" fontStyle="bold"
fontColor="000000FF" angleTypePrefer="line"
angleTypeAllow="line" brushColor="0"
brushStyle="clear"
horizontalPositioningAllow="center,left"
verticalPositioningAllow="top"
horizontalPositioningPrefer="center"
verticalPositioningPrefer="top"
drawOnlyWithShape="1" labelBuffer="1"
minDistanceBetweenSamelabels="150"/>
</LayerLabeler>
</SetUserLabelerRequest>

RESPONSE
<SetUserLabelerResponse/>

Chapter: SetUserLabeler

w

Geointelligence Map Server — API Reference

19. DELETEUSERLAYERDATA

imputparameters | G TN T Value
ET R Authinfo

connectionHandle v % string
DeleteUserLayerDataRequest
S layerName 7 string
DeleteUserLayerDataResponse

errorMessage - v

T | return integer

DESCRIPTION

In case a user has added custom layers to a map and populated them with data, the
DeleteUserLayerData can be used to clear the data contained in the specified user layer.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The DeleteUserLayerDataRequest element contains only one attribute, namely the name of
the layer whose data should be deleted.

OUTPUT PARAMETERS DESCRIPTION

The DeleteUserLayerDataResponse is empty if the call was successful. Otherwise it contains a
description of the error encountered.

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful and <> 1 if the connection attempt failed.

EXAMPLE

REQUEST

<Authlnfo connectionHandle="123456"/>
<DeleteUserLayerDataRequest layerName=""/>
<DeleteUserLayerDataResponse/>

Chapter: DeleteUserLayerData

U
N

Geointelligence Map Server — API Reference

20. ROUTE

Input Parameters - Im N Jvale |

e
v % string

string (<empty>)

RouteParameters

—_~
o

~
[

—

EGSA, WGS84}

{
{0,1}

{Ol 1l2I3l4l5I617}

double (0.0)

string

Output Parameters

RouteResponse

o wv
s
T TR
o

o
o
c
=X
o

Q Q
o o
c c
= =
))

pointArray [;]

IlIlIIIIIlIlIIII IlI IxI\IIIIIIxIxxIxIxI

Chapter: Route

U
0p

Geointelligence Map Server — APl Reference

pointY - - double

description - - string

timeToStay - - double
return - - integer

DESCRIPTION
The Route function is used to calculate a route between the specified routing points.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The RouteRequest element contains the following attributes:

e resultsinLayer: this is the output layer that will be used to store the segments of the
calculated route
e turnsinLayer: this is the output layer used to store the turns of the calculated route
e deleteExistingData: this is a bit attribute, which when set to 1 will cause previous routes
calculated in the current session to be deleted from the output layer.
e returnSegmentCoordinates: this is a bit attribute specifying whether the coordinates of each
route segment should be included in the route response
e coordinateSystem: specifies the coordinate system that will be used to express the
coordinates of the routing points and the resulting route.
e gvoidFlags: Roads to avoid. The following values can be combined (using the sum):
o 1:Attiki Odos
2: Sea lines
4: Toll roads
8: Athens Traffic control Ring
16: Ymittou Avenue
32: High speed roads
o 64: Avenues
e optimiseRouteOrder: if set to 1 will invoke the optimal route calculation. Otherwise the route
will be based on the order of the route points specified by the user.
e optimiseRouteOrderMode: The following optimization modes are available:
o 0:optSE Start > End
: optRnd Round Trip
: optSNoE Start NoEnd
: NoOptSE No optimization, Start = End
: NoOptRnd No optimization Round Trip
: optSE_sl Start - End. Straight Line
: optRnd_sl Round Trip, Straight Line
: optSNoE_sl Start, NoEnd Straight Line

O O O O O

O O 0O 0 0 0 O
NOU S WNR

The available optimization modes are the following:

- OptSE: A route is calculated that starts at the first node given and ends at the last node given
in the route point list. The order of the intermediate points is optimized.

- optRnd: A route is calculated where the order of all route points is optimized.

- OptSNoE: A route is calculated where the start point is fixed (the start given) and the order
of the other points is optimized. The end point will be somewhere far from the start point.

Chapter: Route

(@)

Geointelligence Map Server — APl Reference

The straight-line variants of the above modes (optSE_sl, optRnd_sl, optSNoE_sl) use straight-line
distances to calculate the route order optimization. This is a lot faster but can be less accurate.

Finally modes NoOptSE and NoOptRnd cancel the route optimization and should not be selected.

Multiple routes can be requested within one routing request. For each request a Route element is
defined having an identifying Routeld. Nested within it are the route points defined by the user and
specified as RoutePoint elements.

Each RoutePoint element contains its X and Y coordinates stored in the pointX and pointY
attributes and a textual description. The order attribute specifies in which turn the points
need to be visited in. Finally the user must specify duration in minutes in the timeToStay
attributes that will be added to the total duration of the route, or should skip this attribute
completely.

OUTPUT PARAMETERS DESCRIPTION

For each Route requested a RouteResult element is nested in the RouteResponse and is identified by
the Routeld of the initial request. Each RouteResult contains the segments of the calculated route as
RouteSegment elements. For each element the following attributes are available:

e order: the order the route point will be visited. In case of optimal routing, this will be
different than the input order.

e name: address or name of input point

e time: time required to traverse the current segment

e totalTime: total time of the journey up to this segment

e distance: length of the current segment

e totalDistance: total distance traversed up to this segment

e speed: speed on the current segment

e turn: degrees of the turn

e turnPointX, turnPointY: coordinates of the turning point

e segments: the coordinates used to define the route segment as X,Y pairs separated by semi-
colons.

e turnSegments: the coordinates used to define the auxiliary turn segments that are displayed
on the map as arrows, also expressed as X,Y pairs.

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

REQUEST

<AuthInfo connectionHandle="123456"/>

<RouteRequest resultsInLayer="" turnsInLayer="" deleteExistingData=""
—nn

returnSegmentCoordinates= coordinateSystem="">
<Route routeId="">

Chapter: Route

N

Geointelligence Map Server — API Reference

<RoutePoint order="" pointX="" point¥Y="" description="" timeToStay=""
<RoutePoint order="" pointX="" point¥="" description="" timeToStay=""
</Route>
</RouteRequest>
RESPONSE
<RouteResponse>
<RouteResult routeld="">
<RouteSegment order="" name="" time="" totalTime="" distance=""
totalDistance="" speed="" turn="" turnPointX=""
turnPointY="" segments="" turnSegments=""/>
<RouteSegment order="" name="" time="" totalTime="" distance=""
totalDistance="" speed="" turn="" turnPointX=""
turnPointY="" segments="" turnSegments=""/>
</RouteResult>
<RouteResult routeId="">
<RouteSegment order="" name="" time="" totalTime="" distance=""
totalDistance="" speed="" turn="" turnPointX=""
turnPointY="" segments="" turnSegments=""/>
<RouteSegment order="" name="" time="" totalTime="" distance=""
totalDistance="" speed="" turn="" turnPointX=""
turnPointY="" segments="" turnSegments=""/>
</RouteResult>
</RouteResponse/>

/>
/>

Chapter: Route

(00

Geointelligence Map Server — API Reference

21.CALLEXTENDEDFUNCTION

M [N |vale |

string

Input Parameters

authinfo

<

ExtendedFunctionParameters

Output Parameters
ExtendedFunctionResponse

integer

DESCRIPTION

The CallExtendedFunction is a method used to invoke utility methods required for server
maintenance tasks. Depending on the element name passed in the
ExtendedFunctionParameters, a different function is called.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

OUTPUT PARAMETERS DESCRIPTION

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful and <> 1 if the connection attempt failed.

Chapter: CallExtendedFunction

U
X0

Geointelligence Map Server — API Reference

PINGUSERS

TS S ETENEE AN | PingUsersRequest

connectionHandles v - string
Output Parameters
PingUsersResponse pingUsersResponse = S

userExistsMask - - {ol1y*
errorMessage - v' string
return - - integer

DESCRIPTION

The PingUsers function is used to identify whether the given connection handles correspond
to active users.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The PingUsersRequest element contains the connection handles to be checked for activity.
These are contained within the connectionHandles attribute and are given as a comma (,) or
semi-colon (;) separated list.

OUTPUT PARAMETERS DESCRIPTION

The PingUsersResponse element contains the userExistsMask, which identifies the active connection
handles. The userExistsMask is a string consisting of 0 and 1 digits, whose position indicates whether
the corresponding connection handle is active. For example a userExistsMask="01" indicates that only
the second connection handle is active.

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

<PingUsersRequest connectionHandles ="123456; 456789"/>
<PingUsersResponse userExistsMask="01"/>

Chapter: CallExtendedFunction

(o))
o

Geointelligence Map Server — API Reference

GETUSERSINFO

VESENIEIE IS | UsersinfoRequest

I connectionHandles oo string
UsersinfoResponse = =

I errorMessage - v string
S Userinfo

_ userName string
_ connectionHandle string
P jastActivityTime dd/mm/yyyy hh:nn:ss
D expiryTime dd/mm/yyyy hh:nn:ss
m return integer

DESCRIPTION

The GetUsersInfo function is used to retrieve information about the currently connected
users.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The PingUsersRequest element contains the connection handles to be checked for activity.
These are contained within the connectionHandles attribute and are given as a comma (,) or
semi-colon (;) separated list.

OUTPUT PARAMETERS DESCRIPTION
The UserInfo element contains the following attributes:

e username: this is the username specified during the initial connection and corresponding to
the connectionHandle created by the server

e connectionHandle: this is the connection handle specified in the initial response

e astActivityTime: this attribute specifies the timestamp the last user request was received. It
is given in the format dd/mm/yyyy hh:nn:ss, where dd is the date of the month, mm is the
month, yyyy is the year, hh is the hour, nn the minutes and ss the seconds of the timestamp.

e expiryTime: this attribute specifies the time that this connection will be dropped if it shows
no further activity.

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

Chapter: CallExtendedFunction

=

Geointelligence Map Server — APl Reference

FUNCTION RESULT DESCRIPTION

"The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

REQUEST

<UsersInfoRequest connectionHandles ="123456; 456789"/>

REQUEST

<UserInfoResponse>

<UserInfo userName="testl" connectionHandle="123456"
lastActivityTime="12/12/2005 00:31:22"
expiryTime="12/12/2005 00:31:22"/>

<UserInfo userName="test2" connectionHandle="456789"
lastActivityTime="13/12/2005 00:32:22"
expiryTime="12/12/2005 00:31:22"/>

</UserInfoResponse>

Chapter: CallExtendedFunction

N

Geointelligence Map Server — API Reference

DELETECONNECTIONS

input Parameters I LV N K7

IS RTINS E | DeleteConnectionsRequest

connectionHandles v % string
Output Parameters
DeleteConnectionsResponse DeleteConnectionsResponse

releasedConnections - - string
errorMessage - v string
return - - integer

DESCRIPTION
This function is used to drop the specified connections identified by their handles.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The DeleteConnectionsRequest element contains the connection handles to be dropped.
These are contained within the connectionHandles attribute and are given as a comma (,) or
semi-colon (;) separated list.

OUTPUT PARAMETERS DESCRIPTION

The response of the DeleteConnections functions contains a semi-colon separated list of the
connection handles corresponding to connections that were successfully dropped.

In cases where the function call fails (function result <> 1) then the errorMessage attribute
contains the description of the error. No other information will be available in the output
parameter.

FUNCTION RESULT DESCRIPTION

'The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

<Authlnfo connectionHandle="123456"/>
<DeleteConnectionsRequest connectionHandles="123456; 456789"/>
<DeleteConnectionsResponse releasedConnections="123456"/>

Chapter: CallExtendedFunction

w

Geointelligence Map Server — API Reference

22.GETDESTINATORDATFILE

[input parameters | TN Valve |
I Authinfo
B comectiontandle ¥ % sting

KL L | DestinatorDATFileRequest 1= 1= [

{EGSA, WGS84}

string <empty>

string <empty>

integer <empty>

double (0.0)

B BRI E

Output
Parameters
authinfo

integer

string

integer

DESCRIPTION

‘This method is used to create the binary dat file that is used by the Destinator navigation
software to store the Favorites destinations.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The DestinatorDATFileRequest element contains the coordinateSystem attribute defining the system
used to express the addresses following. It includes a list of DestinatorDATEntry elements defining the
addresses to be included in the favourites file. Each entry should have the following attributes:

e entryName: this is required to identify the favourite feature
e entryComment: an optional explanatory comment

e addressName

e addressNumber:

e gaddressLocation: the city

e pointX, pointY: the geographical coordinates of the point

Chapter: GetDestinatorDATFile

(@)
1S

Geointelligence Map Server — API Reference

OUTPUT PARAMETERS DESCRIPTION
~Within the Data element the DAT file is returned in base64 encoded format.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

Chapter: GetDestinatorDATFile

o))
0p

Geointelligence Map Server — API Reference

23.PINGSERVICE

This is a utility method that does not take any parameters. If the server is up and running the method
will return 1 as its result.

24. PROJECTPOINTS

alue

<

Input Parameters

authinfo
string

LayerOrderParameters
{EGSA, WGS84}

integer (5)

integer (0)

Output Parameters

LayerOrder
string

integer

o R

integer

DESCRIPTION

The ProjectPoints is a utility method used to convert coordinates between different
coordinate systems.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The fromCoordinateSystem and toCoordinateSystem specify the source and target systems. The
precision of the conversion is specified by the numberOfDecimalDigits parameter.The Data element
contains the coordinates of the points to be converted as a semi-colon separated list in the form of
X3, Y1,X2; Y2505 X0, Y

OUTPUT PARAMETERS DESCRIPTION

Chapter: PingService

(o))
(@)

Geointelligence Map Server — API Reference

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

The Data element contains the converted coordinates of the points as a semi-colon
separated list in the form of X;;Y1;X5;Y2;...;X0; Ya

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

REQUEST

<ProjectPointsRequest fromCoordinateSystem=
numberOfDecimalDigits="">

<Data id="" points="" />

<Data id="" points="" />

toCoordinateSystem=

</ProjectPointsRequest>

RESPONSE

<ProjectPointsResponse>
<Data id="" points="" />
<Data id="" points="" />

</ProjectPointsResponse>

Chapter: ProjectPoints

N

Geointelligence Map Server — API Reference

25. GETDISTANCE

- Im [N Jvale |

string

Input Parameters

authinfo

GetDistanceParameters

{EGSA, WGS84}

double

double
Output Parameters

GetDistanceResponse
string

double
integer

S NN N

DESCRIPTION

The GetDistance method is a utility method used to calculate the straight-line distance
between two given points.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The coordinateSystem specifies the input points coordinate system.

The point1X, point1Y, point2X, point2Y are the coordinates of the two input points.

OUTPUT PARAMETERS DESCRIPTION

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

The distance attribute contains the calculated distance in meters.

FUNCTION RESULT DESCRIPTION

‘The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

Chapter: GetDistance

@)
(00

Geointelligence Map Server — API Reference

REQUEST
<GetDistanceRequest coordinateSystem="" point1X="" pointlY="" point2X="" point2Y="" />

RESPONSE
<GetDistanceResponse distance="" />

Chapter: GetDistance

(@)
X0

Geointelligence Map Server — API Reference

26. GETCOSTMATRIX

______Im N Jvalee |

Input Parameters

Zuthinio o
string
GetCostMatrixParameters _
{0,1}
{0,1}

integer

double
Output Parameters
GetCostMatrixResponse

string
double

integer
double
double

o] I \I\I\\\I\I

integer
double
double
integer

DESCRIPTION

The GetCostMatrix method is a utility method used to calculate the cost and distance matrix
for a set of given input points. The maximum number of input points is 50.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The coordinateSystem specifies the input points coordinate system. The pointX, pointY are the
coordinates of the input points. The pedestrianMode attribute specifies if pedestrian routing should
be used for the route calculations. The routeShortest attribute specifies if the routing between any
two points should be fastest (minimum time) or shortest (minimum distance).

Chapter: GetCostMatrix

N
o

Geointelligence Map Server — APl Reference

OUTPUT PARAMETERS DESCRIPTION

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

The OutputPoints elements contains the coordinates of the points for which the cost matrix
has been calculated. These may be different from the InputPoints, as the cost can be
calculated only for points accessible through the road network. Thus if an input point is on a
pedestrian road, the output point will the closest point accessible by road.

The CostMatrix element contains the CostMatrixResult sub-elements. Each CostMatrixResult
contains the id of the start node and the attributes cost and distance. The value of the cost
and distance attributes is value list (separated by semi-colons) and representing the time
and distance from the start point to each end point. The time is measured in minutes and
the distance in kilometres.

FUNCTION RESULT DESCRIPTION

'The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

REQUEST

<GetCostMatrixRequest coordinateSystem=
<InputPoints>
<Point id="" pointX="0" pointY="0" />
<Point id="" pointX="0" pointY="0" />

pedestrianMode="0" routeShortest="0" >

<Point id="" pointX="0" pointY="0" />
</InputPoints>
</GetCostMatrixRequest>

RESPONSE

<GetCostMatrixResponse coordinateSystem=
<OutputPoints>
<Point id="" pointX="" pointY="" />
<Point id="" pointX="0" pointY="" />

pedestrianMode="0" routeShortest="0" >

<Point id="" pointX="" pointY="" />
</OutputPoints>
<CostMatrix>

<CostMatrix />

<Point id="" cost="" distance="" />

<Point id="" cost="" distance="" />
</ CostMatrix >
</GetCostMatrixResponse>

Chapter:

[

Geointelligence Map Server — API Reference

28. GETNEARESTPOINTS

Input Parameters C T TM N [Value | Minversion |

T Aiehfo] O
P connectionHandle v\ % string
eI | GetiNearestPointsRequest | <11 = |1 11223
v {0,1} Value 1 is
supported
from 2.5.4

double
double

integer

double

Output Parameters

GetNearestPointsResponse

string
double

integer
double
double
integer

RN l \l\l\\\

DESCRIPTION

The GetNearestPoints method is a utility method used to calculate the cost and routing
distance between a given point and a list of input points.

INPUT PARAMETERS DESCRIPTION

The Authinfo element is the one that was returned by the call to Connect function. It uniquely
identifies the client connection (see Connect’s description).

The coordinateSystem specifies the input points coordinate system. The pointX, pointY are the
coordinates of the input points. The routeShortest attribute specifies if the routing between any two
points should be fastest (minimum time) or shortest (minimum distance). Right now only minimum
time is supported.

OUTPUT PARAMETERS DESCRIPTION

Chapter: GetNearestPoints

~N
N

Geointelligence Map Server — API Reference

In cases where the function call fails (function result <> 1) then the errorMessage attribute contains
the description of the error. No other information will be available in the output parameter.

The OutputPoints elements contains the cost and distance between the main point and each
of the given points. The cost and distance can be calculated only for points accessible
through the road network. Thus if an input point is on a pedestrian road, the output point
cost and distance will the cost and distance of the closest point accessible by road.

The time (cost) is measured in minutes and the distance in kilometres.

FUNCTION RESULT DESCRIPTION

The return value of the function indicates if the connection was successful or not. The
function returns 1 if the connection was successful, <> 1 if the connection attempt failed.

EXAMPLE

REQUEST

<GetNearestPointsRequest coordinateSystem="" routeShortest="0" pointX="0.0" pointY="0.0">
<InputPoints>
<Point id="" pointX="0" pointY="0" />
<Point id="" pointX="0" pointY="0" />

<Point id="" pointX="0" pointY="0" />
</InputPoints>
</GetCostMatrixRequest>

RESPONSE

<GetNearestPointsResponse coordinateSystem=
<OutputPoints>
<Point id="" cost="" dist="" />
<Point id="" cost="" dist="" />

routeShortest="0" >

<Point id="" cost="" dist="" />
</OutputPoints>
</ GetNearestPointsResponse>

Chapter: GetNearestPoints

w

Geointelligence Map Server — APl Reference

29.TYPICAL USE SCENARIOS

INITIALISING A CONNECTION TO THE SERVER

In order to access the functionality of the server the user has to connect to the server providing their
credentials. Function Connect initialises a connection to the server and returns an identifier that is
used in all subsequent calls to the server.

USING THE MAP SERVER

After a successful connection to the server has been made the client can start using the functions of
the server. The currently available functions are:

e GetAvailableLayers: The function is used to retrieve the layer names, ids and geometry types
for the layers that the map server exposes for the given client connection. Each connection is
associated with user credentials which in turn determine the datasets that the connection
has access to.

e OrderlLayers: The function changes the ordering of the layers for the specific connection. The
layers (as specified in the server initialisation file) have a predetermined order which is set
during the initialisation of the server. With OrderLayers each client connection has a chance
to set its own preferred ordering.

e GetFulllmage: The function is used to get the map image for the full extent of the datasets.
Typically this is the first function to be called in a mapping client application since the client
connection does not known in advance the extent of the datasets. The function returns in
the output parameter the image data as a Base64 encoded string as well as the full extent of
the datasets. The extent is then used as a starting point for subsequent calls in
GetlmageForExtent.

e GetlmageForExtent: The function gets the map image off the server as a Base64 encoded
string for the client specified extent parameters (minX,minY,maxX,maxY).

e GeocodeAddress: The function is used to geocode a user specified address.

e AddUserLayer: The server provides a client connection the capability to import its own data
as a different layer that behaves the same way as the standard preconfigured server layers. A
typical use would be the creation of an event layer for different Points Of Interest not
available in the server database that the client connection can then visualise and process in
exactly the same manner as standard layers. AddUserLayer is used to create such layers for
the client connections, which can then be used to accept user data.

e AddUserLayerData: The function is used to add data to a previously created user layer with
AddUserlLayer function. Apart for the data itself the captured data coordinate system may
optionally be specified to support on the fly projection of the input data to the server’s
database default projection system (EGSA 87).

FINALISING A CONNECTION TO THE SERVER

In order to finalise the connection to the server when the server functionality is no longer needed, the
user calls Disconnect function which is responsible for the actual finalisation of the client connection
releasing all resources occupied by the connection and performing necessary cleanups. Because client
connections sometimes require significant amounts of memory, the server keeps track of the client
connection last activity’s timestamp and automatically drops the connection if not used for a period
of 60 minutes.

Chapter: Typical Use Scenarios

~
N

Geointelligence Map Server — APl Reference

TYPICAL CLIENT SCENARIO

Assume that a developer wants to build a very simple vehicle tracking system for one of his clients.
The client requires that a map is present where the end user can inspect the location of a vehicle as
being transmitted by a hardware unit in the vehicle and received by a unit in the surveillance center.
The user wants to see the track of the vehicle on the map with the map always centered at the last
recorded vehicle position. What the developer has to incorporate into the application as far as NGI
MapServer is concerned is the following sequence of steps.

1. Connect to the map server at http://<host>:<port>/NGIMapServer/soap/INGIMapServer
using the Connect function to pass their credentials to the server. Assuming that the
username and password are correct, the server responds with the connection identifier.

2. Call AddUserLayer to create the event layer that will keep the vehicle locations coordinates.

3. Call GetAvailableLayers to get information about the available layers that the server is
exposing.

If required change layer ordering sending an OrderLayers request to the server.

5. Call GetFulllmage to present the user with a broad map view in a picture box xxx pixels width
by yyy pixels height. Save returned extent parameters (MinX, MinY, MaxX, MaxY) for
subsequent transformations between pixels and extents.

6. If the user is allowed to zoom in, zoom out, pan etc. implement local logic to perform
transformations from pixel to actual coordinates and call GetimageForExtent each time a
location change request is taking place.

7. Every time an event (new vehicle location has been received) is available add it to the user
layer created in step 2 using AddUserLayerData and refresh the map with GetlmageForExtent
for the extent rectangle centred at the location of the new event.

30. APPENDIXES

| CUSTOM LAYERS
Gl Map Server comes by default with a number of GIS layers preinstalled. These layers are defined in
the initialization file (serverinit.xml); their data lie in the server’s database. However there is another
type of layers, named Custom Layers. Custom layers are also defined in the initialization file, but their
shapes do not reside in any database, rather their data are set using xml in their definition.

EXAMPLE

</GisLayers>
<CustomLayers>
<CustomLayer name="Layer_Test" renderer="daktylios" >
<Data coordinateSystem="WGS84" >
<MultiPolygon labelString="1">
<Polygon>
<ExteriorRing
coords="22.941126999999998;40.634831;22.942114,;40.635955;22.9425,40.635825;22.942994000000002;40.636509;22.9419
42;40.637013;22.941384;40.637453;22.935053999999997;40.640595999999995;22.935268999999998;40.64233;22.926643;4
0.64688;22.9253981;40.64543110000001;22.9246691;40.64580569999999;22.924197;40.64518700000001;22.92233;40.6429
08;22.922909;40.640246;22.923338000000005;40.637372000000006;22.926149;40.636965;22.930483999999996;40.636867;
22.93632;40.632649;22.937694,40.633561;22.939688999999998;40.632356;22.940526;40.633203;22.939925,40.6335530000
00006;22.940440000000002;40.634156;22.941276999999996;40.634758;22.941126999999998;40.634831" />
</Polygon>
</MultiPolygon>

Chapter: Appendixes

0p

Geointelligence Map Server — APl Reference

<MultiPolygon labelString="2">
<Polygon>
<ExteriorRing
coords="22.94;40.648;22.9;40.63;22.94;40.658;22.94;40.648" />
</Polygon>
</MultiPolygon>
</Data>
<UserAttributes layerClass="ClientLayers"/>
</CustomLayer>
</CustomLayers>

The previous xml snippet defines a custom layer named Layer_Test that is rendered using the
daktylios renderer. The layer is consisted of two multi polygons. Both multipolygons have a
‘labelString’ attribute with a different value (1, 2 respectively). Using Geofence the client can identify
one or more polygons of a certain layer.

Chapter: Appendixes

(@)

